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BUSTER±TNT is a maximum-likelihood macromolecular

re®nement package. BUSTER assembles the structural model,

scales observed and calculated structure-factor amplitudes

and computes the model likelihood, whilst TNT handles the

stereochemistry and NCS restraints/constraints and shifts the

atomic coordinates, B factors and occupancies. In real space,

in addition to the traditional atomic and bulk-solvent models,

BUSTER models the parts of the structure for which an

atomic model is not yet available (`missing structure') as low-

resolution probability distributions for the random positions

of the missing atoms. In reciprocal space, the BUSTER

structure-factor distribution in the complex plane is a two-

dimensional Gaussian centred around the structure factor

calculated from the atomic, bulk-solvent and missing-structure

models. The errors associated with these three structural

components are added to compute the overall spread of the

Gaussian. When the atomic model is very incomplete,

modelling of the missing structure and the consistency of the

BUSTER statistical model help structure building and

completion because (i) the accuracy of the overall scale

factors is increased, (ii) the bias affecting atomic model

re®nement is reduced by accounting for some of the scattering

from the missing structure, (iii) the addition of a spatial

de®nition to the source of incompleteness improves on

traditional Luzzati and �A-based error models and (iv) the

program can perform selective density modi®cation in the

regions of unbuilt structure alone.
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1. Introduction

BUSTER±TNT (Bricogne & Irwin, 1996) is a maximum-

likelihood macromolecular re®nement package. BUSTER

(Bricogne, 1993a) assembles the structural model, scales

observed and calculated structure-factor amplitudes and

computes the model likelihood. The structural model in

BUSTER can include a description of the parts of the struc-

ture for which an atomic model is not yet available (`missing

structure'). TNT (Tronrud et al., 1987; Tronrud, 1992, 1996,

1997, 1999) receives the likelihood derivatives from BUSTER,

evaluates the stereochemistry and NCS restraints residuals

and their derivatives and shifts the coordinates, B factors and

occupancies of the atomic model to maximize their likelihood

while satisfying the restraints.

Both the use of maximum likelihood (ML) and the

modelling of the missing structure help in overcoming the

major drawbacks encountered by classical methods [least

squares (LS) + difference maps] when dealing with the

re®nement and completion of incomplete structures.

(i) Recourse to ML instead of LS helps reduce over®tting of

the observed amplitudes at phases too close to those of the



initial partial structure, by keeping an appropriate distance

from the data. In the presence of non-negligible errors in the

model, LS re®nement is known to produce biased results in

which the corrections to the initial partial structure are smaller

than they ought to be (Bricogne & Irwin, 1996; Pannu & Read,

1996; Murshudov et al., 1997, and references therein).

(ii) The atoms of the missing structure that contribute to the

observed scattering are modelled using a real-space low-

resolution probability distribution for their random positions

(Bricogne, 1984, 1997; Roversi et al., 2000), computed from

any prior low-resolution information already available as to

their placement. This process introduces a spatial non-

uniformity to the source of incompleteness, which departs

from the traditional uniform Wilson distribution of missing

atoms encoded in �A-based error models. This non-uniformity

in turn helps both the scaling process and the partial structure

re®nement.

The ML method and the missing-structure parameterization

are based on a statistical treatment of model structure factors

by techniques that constitute the core of BUSTER (Bricogne,

1988, 1993a). Their purpose is to generate and exploit quan-

titative descriptions of the statistical behaviour of structure

factors resulting from the two main sources of randomness

present in the situation described above:

(i) errors in the current atomic model, i.e. the imperfection

of the atomic model;

(ii) uncertainty arising from the fact that the atoms that are

missing from the atomic model cannot be represented by

de®nite atomic parameters and must be treated as statistically

distributed, i.e. the incompleteness of the atomic model.

At any given stage of the re®nement or completion process,

model structure factors do not have a `calculated value' as

implied by the usual notation Fcalc; instead, they have a

probability distribution. In practice, these distributions are

often approximated by Gaussians and are hence described in

terms of the expectation of any collection of random structure

factors and by the covariance matrix of ¯uctuations around

these expectations (Bricogne, 1988).

This statistical picture takes into account the phase uncer-

tainty present in these model structure factors to drive the

re®nement of the partial structure. Instead of treating their

phases as constants when trying to improve the ®t between the

model amplitudes and the observed ones, BUSTER calculates

the marginal probability distribution of model amplitudes and

seeks to maximize the value taken by this marginal probability

over the observed amplitudes. This value is called the like-

lihood of the current model, �, and its maximization with

respect to all or any of the parameters describing the current

model is called the ML re®nement of those parameters.

Unlike the LS method, the initial probability distribution

for the model structure factors may contain an explicit

dependency on parameters that in¯uence the variance of the

distribution and such parameters may be re®ned along with

others. These parameters are referred to as imperfection

parameters. It is through such re®neable variance-modulating

parameters that the ML method is able to keep a safe distance

between observed amplitudes and the amplitudes of the

traditional Fcalcs and thus avoid over®tting. Experimental

information on the phases attached to the observed ampli-

tudes can further assist in this bias removal.

The ML re®nement of the atomic model (in conjunction

with TNT) and the parameterization of the missing structure

by means of a low-resolution real-space distribution are

naturally associated in this formalism in the sense that the

probability distribution of the model structure factors and

hence the likelihood � of the current model depends

symmetrically on the atomic parameters (x, y, z, B, occu-

pancies) describing the current partial structure and on other

parameters, the Lagrange multipliers (�s), describing the extra

detail currently conveyed by the positional distribution of the

atoms in the missing structure. Since the model structure

factors are sums of contributions from the partial structure,

the missing structure and the bulk solvent, we see that the

gradient of the log-likelihood (LL),L= log(�), with respect to

the expectations of model structure factors can be redirected

(by the chain rule) either towards the atomic parameters on

which the atomic model contribution depends, or towards the

Lagrange multipliers on which the missing structure contri-

bution depends, or towards both.

The present paper focuses on the partial structure re®ne-

ment in BUSTER±TNT, while a manuscript in preparation

will describe the phase re®nement by ML variation of the

missing atoms' �s in BUSTER.

2. Symbols used in this paper

Four types of real-space distributions are dealt with, all of

which are handled in BUSTER as CCP4-format maps sampled

on a crystallographic grid with Nx, Ny and Nz points along the

crystallographic axes. We list here the symbols for these

distributions (but omitting any subscripts) as an aid to the

reader.

f(x): a generic distribution in the crystallographic unit cell.

q(x), m(x): everywhere non-negative and continuous func-

tions, normalized so that their average in the unit cell is unity,

�1=V� R
V

q�x� dx � 1; �1�

V being the volume of the unit cell; when sampling q(x) on a

grid,

1

NxNyNz

PNx

i�1

PNy

j�1

PNz

k�1

q�i; j; k� � 1: �2�

��x�: an electron density, in e AÊ ÿ3 units.

Other symbols are as follows.

Angle brackets: expectation value under a probability

density, hf i � R P�x� f �x� dx.

Angle brackets with a resolution suf®x: average within a

resolution bin,

hf id� �
1

N

PN
h2D�

f �d�h�; �3�
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with D� � h j d� ÿ�� � d�h < d� ���
� 	

and �* the half-

width of that resolution bin.

For the Fourier operators we follow the notation introduced in

x1.3.3.1 of Bricogne (1993b).

3. The BUSTER±TNT structural model

The structural model used for the distribution of the atoms in

the crystal in BUSTER has three components (or channels;

Bricogne, 1988).1

(i) The partial structure (or fragment), the set of atoms for

which positional coordinates, B factors and occupancies are

available and can be re®ned.

(ii) The missing structure, de®ned as the part of the struc-

ture that is scattering in an orderly manner but has not yet

been modelled with atomic positions and B factors.

(iii) The bulk solvent, de®ned as the disordered solvent

atoms occupying the regions left void by the macromolecule in

the crystal.

The distribution of the atoms in the crystal is written as

�calc�x� � �frag�x� � �miss�x� � �solv�x�: �4�
The linearity of the Fourier operator gives a sum of three

terms for the total structure factor as well,

Fh � F
frag
h � Fmiss

h � Fsolv
h : �5�

The three individual components of the structure factor are all

treated as random vectors, each of which is distributed as a

two-dimensional Gaussian in the complex plane, carrying its

own uncertainty model and variance (see xx3.1.1, 3.2.4 and

3.3.1).

Under the hypothesis that the three structural components

are independent, their sum, the structure factor for the whole

structure, is also treated as a random vector and is distributed

in the complex plane according to a Gaussian, which is the

product of the Gaussians for the three individual components.

The assumption that the errors of the partial structure and

the bulk solvent are independent breaks down at low resolu-

tion, given that the Babinet opposite of the bulk-solvent

envelope is most often computed by masking around the

partial structure. Therefore, the error model at low resolution

can be overly pessimistic, because the sum of variances would

need a negative covariance to diminish the total variance.

3.1. The partial structure

The partial structure or fragment is the set of atoms for

which positional coordinates, B factors and occupancies are

available and can be re®ned. The electron density computed

from this atomic model is denoted by �frag(x).

3.1.1. The Luzzati distribution of Fh
frag. We make the

assumption that the distribution of each and every partial

structure atom is a Gaussian centred around the mean atomic

position and that the partial structure atoms are all distributed

independently of one another. It is also assumed that B factors

and occupancy values have no errors associated with them, in

the sense that they follow a degenerate probability distribu-

tion with zero variance (Luzzati, 1952). The same Luzzati

model can be used to model errors in the placement of a rigid-

body `fragment'.

Under these hypotheses for the distributions of positions, B

factors and occupancies, the structure factor for the partial

structure, F
frag
h , is distributed around the offset Ffrag;calc

h with a

variance V
frag
h following a two-dimensional Gaussian whose

®rst and second moments (or offset and variance) are

computed as follows (Bricogne & Irwin, 1996).

(i) The offset is obtained from the partial structure model,

F
frag;calc
h � �F� �frag�x���h�Dfrag

h ; �6�
with D

frag
h � exp�ÿ�1=4�Bfrag

impf d�2h �. B
frag
impf is the parameter

modelling the imperfection of the partial structure. Ffrag;calc
h is

also called the `attenuated fragment structure factor'.

(ii) The variance tensor, V
frag
h , depends on the imperfection

parameter B
frag
impf and is diagonal; the ®rst component, V11

frag,

refers to the real part and the second, V22
frag, to the imaginary

part of the structure factor. For each re¯ection h, both diag-

onal elements, Vii
frag, are set so that they are equal to half of the

average partial structure intensity within the resolution bin for

that re¯ection,

hVii
frag � �1=2� "hh �F��frag�x��2�h�id� �1ÿ �Dfrag

h �2�: �7�

When the fragment coordinate error is very small, the

imperfection factor tends towards zero, the partial structure

offset tends to the unattenuated fragment structure factor and

the associated variance shrinks towards zero. In this limiting

case, and provided that the model contains no other source of

error, the present formalism tends towards a standard LS

problem.

At the opposite end of the imperfection regime, with large

coordinate errors, B
frag
impf tends to in®nity, the offset tends

towards zero and the variance is the full fragment intensity in

the resolution bin. The imperfection factor erases all previous

knowledge of atom localization and the only remaining

information comes from the number, type and temperature

factor of the pool of missing atoms. This is the Wilson regime.

3.2. The missing structure

Within BUSTER, the atoms in the missing structure are

described by adopting the random scatterer model, introduced

to crystallography in the context of direct methods (Bricogne,

1984). According to this model, the missing atoms are all

equally and independently distributed at random, following

the real-space distribution qmiss(x), which can be modulated by

maximum-likelihood re®nement with entropy restraints

(Bricogne, 1997; details of the modulation of qmiss will be given

by a paper in preparation).

During the BUSTER±TNT re®nement of the partial struc-

ture atomic model no modulation of qmiss is carried out and for

all practical purposes this distribution can be thought of as a
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1 The ®rst and third contribution to the crystal electron density are the familiar
contributions present in all macromolecular re®nement programs, while the
second is to date present in BUSTER only.



prior probability distribution for the random positions of the

atoms of the missing structure. In this case, qmiss is indicated as

mmiss(x) or simply m(x). With this probability model one can

compute not only a value for the expectation of the low-

resolution electron density for the missing structure but also a

statistical variance around that expectation (the latter

variance captured in reciprocal space, see x3.2.4).

The calculation of mmiss(x) is described in the next sections.

Similar techniques can be used to compute the envelopes for

the whole macromolecule or for the bulk solvent. A more

detailed description of the algorithms described here is given

by Roversi et al. (2000).

3.2.1. Uniform prior mmiss(x). The simplest choice for the

prior probability distribution of the atoms in the missing

structure is to exclude them from the regions that already

contain a reliable atomic model; this approach brings into the

statistical model the notion that a number of atoms are missing

and that they are equally likely to be anywhere except where

other atoms have been placed already.

The uniform prior distribution is de®ned in four steps.

(i) A binary mask is drawn around the atomic model.

(ii) This mask is symmetry-expanded to cover the whole

cell.

(iii) The mask is negated to obtain a mask over the missing-

structure region.

(iv) The mask is blurred by means of a convolution with an

isotropic Gaussian and normalized. The convolution is carried

out in reciprocal space, using a set of periodized (`aliased')

structure factors (Roversi et al., 1998) for mmiss(x), to ensure

that the ®nal distribution is everywhere non-negative and free

from Fourier-truncation artefacts.

We stress that this distribution is uniform outside the

regions occupied by the model, hence the name `uniform

prior', but its shape is not uniform; only in the absence of any

atomic model would this be a truly uniform distribution

throughout the unit cell.

We also notice that if the bulk-solvent envelope is chosen to

®ll up all the space left empty by the macromolecular model,

the missing-structure envelope and the bulk-solvent envelope

overlap. Although they can still differ for the parameter B

used in the blurring step, this overlap introduces very large

correlations between the scaling parameters for these two

components.

3.2.2. Model-based non-uniform prior m(x). Sometimes a

rough guess is available as to the placement of a subset of

atoms, such as a protein loop or domain or a bound ligand,

but the model tentatively built for the same atoms is ques-

tionable.

An envelope mmiss(x) can then be built around these ill-

de®ned atoms and the same atoms can be omitted from the

partial structure. The real-space picture of the crystal in this

case then comprises the bulk-solvent envelope, the atomic

model for the trusted traced atoms and the missing-structure

envelope. The latter is localized around the tentatively placed

atoms; it represents our prior expectation about their position

but does not retain any of the high-resolution details that are

being assessed.

The prior distribution is computed in the same way as in the

uniform prior case, except for the de®nition of the initial

binary mask; a mask is built around the total structure (frag-

ment and missing structure), from which a mask around the

fragment alone is then subtracted. By suitably assigning the

masking radii, this protocol allows for the generation of an

envelope around a missing loop or domain or a layer of

partially ordered solvent around the fragment.

Again, depending on the PDB models, masking radii and

blurring factors used to compute the missing structure and

bulk-solvent distributions, their boundaries can sometimes

overlap; in the majority of cases, however, the default para-

meters for masking and blurring minimize the extent of the

overlaps and thus the potential for spurious high-resolution

features in those regions.

3.2.3. Map-based non-uniform prior m(x). Even when no

tentative atomic model for the missing structure is available,

some rough idea about its placement can be retrieved from the

presence of high values of the density (or of its local r.m.s.d.)

in noisy electron-density maps, using techniques ®rst devel-

oped to perform phase improvement by density modi®cation,

either via the local average of the electron density (Wang,

1985; Leslie, 1987) or from its local ¯uctuation around the

mean (Reynolds et al., 1985; Jones et al., 1991; Abrahams &

Leslie, 1996; Abrahams, 1997).

Once the local density ¯uctuation, !�(x), has been obtained,

one may use the homographic exponential model for the

whole macromolecular envelope (for details, see Roversi et al.,

2000),

fmacrom�x� � �1� expfÿ�macrom�!��x� ÿ �macrom�g�ÿ1: �8�
Histogramming of !�(x) gives the value of �macrom that

corresponds to the appropriate solvent fraction, while the

value of �macrom is taken as proportional to the reciprocal

r.m.s. error of the starting density (Blow & Crick, 1959),

1=� /P
h

"h�1ÿ FoM2
h�F2

h; �9�

FoMh being the ®gure of merit,

FoMh � �hcos 'hi2 � hsin 'hi2�1=2; �10�
computed from the current phase probability distribution

P�'h�.
Then, to exclude the fragment region from the prior prob-

ability distribution for the missing atoms, a homographic

exponential model of the fragment density is needed. The

local ¯uctuation, !frag
� �x�, can be computed based on �frag(x) as

outlined above; the values of �frag and �frag are computed from

the r.m.s. error of the fragment model density and its fractional

volume, as seen above. The homographic exponential model

for the fragment density is then

ffrag�x� � �1� expfÿ�frag�!frag
� �x� ÿ �frag�g�ÿ1: �11�

Finally, the homographic exponential model for the missing

structure envelope is proportional to the probability that

position x lies in the whole macromolecular envelope but not

in the fragment envelope,
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fmiss�x� � fmacrom�x��1ÿ ffrag�x��; �12�

and the prior distribution for the placement of the atoms of

the missing structure is

mmiss�x� � V
�R

V

fmiss�x� dx

� �
fmiss�x�: �13�

An example of such a map-based missing-atoms distribution,

computed for the missing domain 1 of CD55 using a partial

atomic model for domains 2, 3 and 4 of CD55, is shown in

Fig. 1.

3.2.4. The distribution of Fh
miss. Unlike the Luzzati error

model, the structure-factor distribution for the missing struc-

ture when expanded using an Edgeworth series (Bricogne,

1984) would, strictly speaking, contain terms past the second

order. These terms are neglected so that Fmiss
h follows a

Gaussian distribution around the offset Fmiss;calc
h with a

variance Vmiss
h . The structure-factor offset and variance for the

missing structure are computed as follows.

(i) The offset is obtained by Fourier transforming the

missing structure distribution, qmiss(x), and multiplying it by

the sum of the missing atoms' scattering factors, �miss
1 �h�,

Fmiss;calc
h � �miss

1 �h� �F�qmiss�x���h�Dmiss
h ; �14�

with Dmiss
h � exp�ÿ�1=4�Bmiss

impf d�2h �. �miss
1 �h� is computed on the

basis of an initial guess as to the number, type and B factor of

the missing atoms,

�miss
1 �h� �

PNmiss

j�1

fj�h� exp�ÿ�1=4�Bj d�2h �: �15�

The ML re®nement of a relative scale factor and temperature

factor for the missing-atom component (x4.1.2) will correct for

errors in this initial guess as to the chemical composition and

temperature factors of the missing structure.

(ii) The variance-tensor elements, V
ij
miss, are computed from

the second moment of the missing atoms' unitary structure

factor, Umiss
h � �F [qmiss(x)](h) (using structure-factor algebra;

Bertaut, 1955a,b) and scaled by the imperfection factor and by

the inverse square of Kmiss
impf,

hV11
miss � �miss

2 �h� � h<Umiss<Umissih � �1ÿ �Dmiss
h �2�=�Kmiss

impf�2;
hV12

miss � h V21
miss

� �miss
2 �h� � h<Umiss=Umissih � �1ÿ �Dmiss

h �2�=�Kmiss
impf�2;

hV22
miss � �miss

2 �h� � h=Umiss=Umissih � �1ÿ �Dmiss
h �2�=�Kmiss

impf�2:
�16�

�miss
2 �h� is the sum of missing-structure scattering factors

squared,

�miss
2 �h� �

PNmiss

j�1

f 2
j �h� exp�ÿ�1=4�2Bj dh

�2�: �17�

This variance introduces a spatial localization to the `Wilson'

variance traditionally associated with a statistical model for

missing atoms; in (16), the variance arising from the statistical

nature of the distribution of random atoms is computed using

the products between real and imaginary components of the

unitary structure factors of the real-space missing-atom

distribution.

�miss
2 �h� in the same formula represents the average scat-

tering power of the missing atoms, while Kmiss
impf adjusts the

`granularity' of the missing-atom scattering; by the central

limit theorem, the missing-atom variance is greater if the

scattering comes from a single `random scatterer' (Bricogne,

1984) of scattering power f than if the same amount of scat-

tering is produced by N `random scatterers' of scattering

power f/N, all distributed according to one and the same

missing-atom positional probability distribution.

The Luzzati-like variance modulation term 1 ÿ �Dmiss
h �2 is

introduced in (16) as a means of overcoming the shortcomings

arising from neglecting the covariances between the channels.

The functional form of this term was selected so as to allow the

re®nement of the random-atom variance contribution as a

function of the resolution. Again, when Bmiss
impf re®nes towards

0, the variance from the missing structure vanishes, while when
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Figure 1
The 3.5� contour of the BUSTER prior distribution, mmiss(x), for the
missing domain 1 of CD55 in the re®nement of CD55234 against crystal
form B CD551234 data, superposed on the model for the same missing
domain 1 taken from the deposited structure of the same crystal form of
CD551234 (PDB code 1ojw). The distribution is a homographic
exponential model (see x3.2.3) computed with variance ®ltering of a
map obtained with the atomic model for CD55 domains 2±4 only (see
x7.2.2). The ®gure was drawn with the program AESOP (M. E. M. Noble,
personal communication).



this parameter is large the components of the variance tensor

tend toward the full second moments of the missing-atom

distribution. Unlike the average intensities that enter the

calculation of the fragment (and solvent) variances [see (7)

and (20)], the second moments in (16) can extend to high

resolution and only the presence of the �miss
2 �h� factor ensures

the fall-off of the missing structure variance with resolution.

3.3. The bulk solvent

The calculation of the bulk-solvent contribution to the

crystal scattering with several different methods of increasing

complexity has been described in the crystallographic litera-

ture (Glykos & Kokkinidis, 2000, and references therein). The

bulk-solvent density in BUSTER±TNT is modelled using an

envelope uniformly ®lled with a given solvent electron density,
��s, and thermally smeared with a ®xed temperature factor Bs.

3.3.1. The distribution of Fh
solv. The structure-factor distri-

bution for the bulk solvent, Fsolv
h , follows a two-dimensional

Gaussian distribution around the offset Fsolv;calc
h with a

variance Vsolv
h . The offset and variance are computed as

follows.

(i) The offset for the distribution of Fsolv
h is the calculated

Fsolv;calc
h ,

Fsolv;calc
h � �F�qsolv�x���h� � ��s exp�ÿ�1=4�Bs d�2h � �Dsolv

h ; �18�

with Dsolv
h � exp�ÿ�1=4�Bsolv

impf d�2h �.
qsolv(x) is not computed at any stage; the �F [qsolv(x)](h) term

is obtained using the Babinet principle2 relating the low-

resolution Fourier components of two complementary distri-

butions qsolv(x) and qmacrom(x),

�F�qsolv�x���h� � ÿ�Vmacrom=Vsolv� �F�qmacrom�x���h�: �19�

qmacrom(x) is obtained by masking either around the whole

molecule atomic model or around the partial structure3 and

smoothing the resulting binary mask. The masking±smoothing

procedure is not detailed here as it is performed in a similar

fashion to the procedure described in x3.2.2, where model-

based missing structure envelopes are discussed.

Fsolv;calc
h should be re-estimated whenever qmacrom(x) has

changed, typically because the partial structure and/or the

missing structure distribution have changed. In the current

implementation, however, the bulk-solvent structure factors

are computed only once, at the beginning of the BUSTER

job.4

(ii) As seen in the case of the partial structure variance, the

solvent-variance tensor, Vsolv
h , depends on the imperfection

parameter Bsolv
impf and is diagonal; its diagonal element, Vii

solv, is

computed from the average solvent intensity within the

resolution bin,

hVii
solv � �1=2� "h h �F�qsolv�x���h�2 � ��2

s exp�ÿ�1=2�Bs d�2h �id�
� �1ÿ �Dsolv

h �2�:
�20�

This formulation of the solvent-error model is also chosen by

analogy to the Luzzati model for the error in the coordinates

of the fragment. This is in spite of the fact that the bulk solvent

is not explicitly modelled as atoms, but rather with a real-space

electron-density distribution, similar to the missing-atom

substructure.

4. The BUSTER likelihood function

In the next sections we examine more closely the calculation

of the BUSTER likelihood function, its gradient and Hessian.

First, the dependence of Fcalc
h and Vcalc

h on the scaling para-

meters is analysed. We then brie¯y present the Rice likelihood

functions and mention the incorporation of external phases

via Hendrickson±Lattman (Hendrickson & Lattman, 1970)

coef®cients.

4.1. Scale factors

All quantities entering a likelihood function need to be on

an observational scale; prior to describing the likelihood

function, in this section we describe the overall scale and

temperature factors that are used to bring quantities from an

absolute scale to an observational scale. The values of these

overall scale and temperature factors are re®ned in BUSTER

by maximizing their likelihood.

The three different contributions to the BUSTER±TNT

model structure factor may also need to be scaled to one

another; relative model scale and temperature factors are also

re®ned jointly with the overall scaling parameters during the

ML scaling in BUSTER.

4.1.1. The overall scaling and temperature factors.
BUSTER overall scaling parameters are of three different

types: the scale factor Koverall, the isotropic scaling B factor

Biso and the components of the anisotropic scaling tensor �,

which enter the isotropic and anisotropic overall scaling

factors,

Fobs
h � �Tiso�h�=Koverall�Taniso�h�Fobs;abs scale

h ; �21�
where (notice the sign of the exponents)

Tiso�h� � exp��1=4�Biso d�2h �;

Taniso�h� � exp �1=4�P
ij

�ija
�
i �a�j hihj

" #
:

The parametrization of the anisotropic scaling factor is slightly

unusual but follows the convention adopted in TNT (Tronrud

et al., 1987; Tronrud, 1997), which constrains the elements of �
to make the tensor traceless and, of course, to obey crystal

symmetry.

4.1.2. Component-specific scaling parameters. The calcu-

lated structure factor is a sum of contributions from three

components, individually scaled to one another by individual
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2 For a recent illustration of the use of the Babinet principle in bulk-solvent
correction, see Guo et al. (2000).
3 If the partial structure is used instead of the model for the whole
macromolecule, the solvent envelope will overlap with the missing structure
regions.
4 This approach makes the BUSTER±TNT bulk-solvent correction less
adequate after rigid-body re®nement, when the atomic shifts are usually large.



scale factors. Because the fragment component usually

represents the main contribution to the total structure factor,

these scaling factors are all expressed relative to the fragment,

which is assumed to be on absolute scale. The expressions for

the calculated structure factor, Fcalc, and its associated

variance, Vcalc
h , on an absolute scale are

Fcalc;abs scale
h � F

frag;calc
h � exp�ÿ�1=4�Bmiss d�2h �

Kmiss

Fmiss;calc
h

� exp�ÿ�1=4�Bsolv d�2h �
Ksolv

Fsolv;calc
h ; �22�

Vcalc;abs scale
h � V

frag;calc
h � exp�ÿ�2=4�Bmiss d�2h �

K2
miss

Vmiss;calc
h

� exp�ÿ�2=4�Bsolv d�2h �
K2

solv

Vsolv;calc
h : �23�

During scaling, all the component-speci®c imperfection

parameters are re®ned together with scaling parameters and

the full covariance between them is taken into account.

4.2. The Rice distribution and the BUSTER likelihood
function

The BUSTER±TNT distribution of Fh is a Gaussian centred

around the offset Fcalc
h (22) with variance Vcalc

h (23). When

integrated over the phase, it gives the conditional distribution

of the structure-factor amplitude, the Rice distribution

R�Fh; Fcalc
h �P�;Vcalc

h �P�� �
R2�
0

G�Fh; Fcalc
h �P�;Vcalc

h �P�� d'h:

�24�
The Rice distribution is a function of the set P of scaling,

imperfection and structural parameters, P = {Pscal, Pimpf,

Pstruct}, in that these parameters enter the de®nitions of Fcalc
h

and Vcalc
h . The details of the centric and acentric Rice distri-

butions implemented in BUSTER±TNT are described by

Bricogne (1997).

Assuming independence between re¯ections, the likelihood

of a re¯ection should be computed by integrating the Rice

distribution over the observed structure amplitude, with a

probability distribution involving both the observed structure

amplitude and its variance. To avoid full two-dimensional

integration and to simplify the calculation, for each observed

re¯ection BUSTER instead computes the likelihood by

consulting the Rice distribution at the value of that observed

structure-factor amplitude,

�h�P� � R�Fh � Fobs
h ; Fcalc

h �P�;Vcalc
h �P��: �25�

This approach effectively amounts to discarding the uncer-

tainty over the observed structure amplitude. Because the

observed uncertainty is usually much smaller than the model

error,5 it is possible to approximate the integration over the

observed structure amplitude by adding the observed variance

(as a scalar tensor) to the variance obtained from the model.

The function maximized during the re®nement of the

parameters is the log-likelihood (LL) of the parameters in

view of the observed data, L�P�,
L�P� �P

h

log �h�P�: �26�

4.3. External phase distribution

Incorporation of external phase information can help

re®nement, especially in cases of limited resolution and/or

data quality (Pannu et al., 1998). When the external phase

information is cast in the form of Hendrickson±Lattman

ABCD coef®cients (Hendrickson & Lattman, 1970), its

inclusion in the distribution for the structure factor is achieved

very simply by adding the `external' Hendrickson±Lattman

coef®cients to the `endogenous' coef®cients obtained from the

BUSTER distribution for the overall structure factor. For this

approach to be possible, both phase distributions must share

the same origin. The resulting phase probability distribution,

PABCD�'�, is used instead of a uniform weight when inte-

grating over the phase in (24). This process gives rise to the

`elliptic' Rice likelihood function derived by Bricogne (1997).

4.4. The expected structure-factor amplitude Fh
xpct

The total structure-factor amplitude can be computed as the

®rst moment of the distribution of the total Fh and is de®ned as

the expected structure-factor amplitude F
xpct
h ,

F
xpct
h � R1

0

R Fh� �Fh dFh: �27�

It is F
xpct
h , on observational scale, that BUSTER compares with

the observed amplitude |Fh|obs to compute R-factor statistics

(see x5.1).

5. Refinement statistics

BUSTER computes several kinds of statistics that serve as a

measure of the agreement between the model and the

observed data. These statistics are evaluated in resolution bins

for free and working sets of re¯ections and are monitored

during the course of the calculation.6

5.1. R factors

The R factors (both overall and in resolution bins) are

computed using the expectation of the model structure

amplitude rather than its calculated value, on the grounds that

the expectation is the current model prediction for an obser-

vation. For re¯ections around resolution d*,

R�d�� � hjFxpct
h ÿ Fobs

h jid�=hjFobs
h jid� : �28�
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5 Only when the model is complete and fairly error free can the magnitudes of
model and observation uncertainties be comparable.

6 Evaluation of the statistics is not performed with a generalized approach
(Cowtan, 2002); rather we use conventional binning of reciprocal space in d2

intervals. Two distinct binnings are effected: a coarser one for overall statistics
and another with smaller bin widths for free- and working-sets statistics.



Notice that F
xpct
h is on observational scale because it comes

from the ®rst moment of the Rice distribution for the

structure-factor amplitude (27).

5.2. Log-likelihood gain

To monitor the changes in likelihood of the parameters

introduced by the ML re®nement, it is useful to consider the

log-likelihood gain (Bricogne, 1997), or LLG for short, de®ned

as the logarithm of the ratio between the likelihood of the

current parameters over the likelihood of the starting para-

meters,

LLG�Pscal;Pimpf;Pstruct� � log
��Pscal;Pimpf;Pstruct�
��P0

scal;P0
impf;P0

struct�
: �29�

The LLG is zero at the beginning of the calculation and

increases whenever the likelihood of the current parameters is

higher than the likelihood of the starting parameters. As with

R factors, the overall log-likelihood gain is split over the

working and the test sets of re¯ections.

In the context of ML re®nement, the log-likelihood gain is a

more natural statistic than the R factor and therefore allows a

more objective and sensitive assessment of the re®nement

progress. On the other hand, the LLG cannot inform a

comparison of different re®nements in that, unlike the familiar

R factor, it is relative to the likelihood of the model at the

starting cycle.

5.3. Correlation coefficients between structure-factor
amplitudes

To check the agreement with the data of structure-factor

amplitudes computed from selected subsets of the BUSTER

structural model, the program computes and outputs corre-

lation coef®cients between several kinds of structure-factor

amplitudes in resolution bins. Each type of correlation co-

ef®cient relates two sets of amplitudes, F1 and F2,

CC�F1;F2��d�� �
hF1F2id� ÿ hF1id� hF2id�

��hF2
1 id� ÿ hF1i2d� ��hF2

2 id� ÿ hF2i2d� ��1=2
:

�30�
The correlation coef®cients, like the R factors, do not directly

contain information as to the quality of the phases, being

computed from the amplitudes alone; unlike the R factors, the

correlation coef®cients are scale-independent. If the re®ne-

ment and completion are successful, the correlation coef®-

cients should increase (see Fig. 2 for the progression in the

case of CD55 re®nements, starting from a two-domain only

model and ending at the full four-domain structure).

Depending on the particular F1 and F2, each correlation

coef®cient contains information about a speci®c aspect of data

quality, model quality or model-to-data agreement.

(i) CC[Fobs, Fobs + �(Fobs)]: signal-to-noise ratio. �(Fobs) is a

Gaussian random variable of zero mean and s.u. �(Fobs) and

the CC is computed as an expected value over the distribution

of these error terms for all re¯ections. Problems in the data,

such as ice rings or drops in the signal-to-noise ratio, are

revealed by a sharp decrease in this correlation plot.

(ii) CC(Fobs, Ffrag): how well does the fragment model ®t the

data? The low-resolution part of the plot shows a dip in the

correlation owing to the scattering from the bulk solvent and

the missing structure; this scattering contribution is present in

Fobs but Ffrag does not account for it. At higher resolution,

both incompleteness and fragment imperfection cause loss of

correlation. Successful fragment re®nement manages to

improve this correlation coef®cient, especially in the high-

resolution range.

(iii) CC(Fobs, Fcalc): how well does the full model ®t the

data? At low resolution, the inclusion of bulk-solvent and

missing-structure models should result in an improved corre-

lation with respect to the CC(Fobs, Ffrag) curve. When re®ning

severely incomplete models, inclusion of the missing-structure

model improves the low-resolution correlation (see Fig. 2).

(iv) CC(Fxpct, Fcalc): how adequate is the current error

model? When the error model is adequate, the CC(Fxpct, Fcalc)

curve loosely follows the CC(Fobs, Fcalc) curve. Overestimated

(underestimated) variances lead to a larger (smaller) loss of

correlation in CC(Fxpct, Fcalc) than in CC(Fobs, Fcalc).

5.4. logrA and overall Luzzati Bimpf

The value of log�A (Srinivasan, 1966; Read, 1986) and of

the overall Luzzati imperfection, Bimpf, are obtained by

computing, respectively, the intercept and slope of the linear

regression in d*2,

�1=2� log�hF2
xpcti=hF2

obsi��d�2� � log �A � �1=4�Bimpfd
�2: �31�

The values of Fxpct that enter (31) include contributions from

the partial structure, the missing structure and the bulk

solvent, so that it is not possible to correlate directly the value

of Bimpf obtained here to the mean-square coordinate error of

the partial structure.

6. BUSTER±TNT partial structure refinement

Re®nement in BUSTER±TNT is carried out in much the same

way as it is in TNT alone, except for three main differences.

(i) The missing-structure contributes a term to the total F
xpct
h

and Fcalc
h .

(ii) The calculated structure factor is handled as a distri-

bution: that is, each Fh is a vector in the complex plane,

distributed around its average value with a model variance

that depends on re®neable imperfection parameters.

(iii) The scaling, imperfection and structural parameters are

re®ned by maximizing their likelihood in view of the observed

structure-factor amplitudes, rather than minimizing the sum

of squared differences between observed and calculated

structure-factor amplitudes.

BUSTER is the scaling and log-likelihood engine of the

calculation, while TNT modules perform every other task,

called by scripts from within the BUSTER binary.
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6.1. Algorithmic details

The ®rst task of the BUSTER program is to generate the

distributions for the missing structure and the solvent.7 During

re®nement of a partial structure, those distributions are kept

constant, as already mentioned. Overall and component-

speci®c scaling and imperfection parameters and fragment

atomic parameters are then re®ned. At each re®nement cycle,

the following tasks are performed.

(i) Computation of the fragment structure factors from the

current atomic model (in TNT).

(ii) Re®nement of the scaling and imperfection parameters,

while keeping the structural parameters ®xed. This task is

performed by (i) ®rst assembling the calculated full model

structure factors, then (ii) computing the total log-likelihood

and its ®rst and second derivatives with respect to all scaling

and imperfection parameters and eventually (iii) re®ning them

against ML until convergence (in BUSTER).

(iii) The re®ned scaling and imperfection parameters and

the structural model are then used to compute structure-factor

amplitude expectation values and all statistics for that cycle (in

BUSTER).

(iv) The total log-likelihood and its derivatives with respect

to the full model structure factors and variances are computed

and chained inside TNT to generate the gradient and a diag-

onal approximation to the Hessian matrix of the total log-

likelihood with respect to the fragment structural parameters.

(v) These likelihood derivatives are combined with the

derivatives of the stereochemical (and optionally NCS)

restraints to generate the shift direction for the coordinates, B

factors and occupancies of the fragment atoms (in TNT).

(vi) Once the step direction has been computed, the step

length is optimized by recomputing the total log-likelihood

and the restraints residual for models obtained at various step

lengths (in TNT). Each total log-likelihood evaluation is

preceded by an optimization of the scaling and imperfection

parameters.

A summary of the parameters involved in scaling is shown

in Table 1.

6.2. Approximations in the derivatives

For the sake of computational expediency, some approx-

imations are made while calculating the derivatives of the total

log-likelihood during both scaling and structural parameter

re®nement.

The gradient component of L for any re®ned atomic

parameter p can be written as

@L
@p
� @L
@Fcalc

@Fcalc

@p
� @L
@Vcalc

@Vcalc

@p
: �32�

BUSTER±TNT neglects the second term in the sum on the

right-hand side of (32), that is, the dependence of the variance

on the parameter p.8

The calculation of the second derivative of the log-

likelihood with respect to the partial structure factor needs to

accommodate the fact that the TNT module rfactor can only

compute and handle the second derivative of an LS residual,

approximately 2=�2, while the second derivative of the log-

likelihood is needed.

To overcome this limitation, an ad hoc �2
h factor is calcu-

lated in BUSTER and passed to TNT, such that the TNT

module rfactor will effectively compute an approximation to

the curvature of the log-likelihood rather than the curvature

of the LS residual. The curvature of the log-likelihood can be

approximated by a scalar quantity, if we neglect the depen-

dency on the variances and take the average of the absolute

values of diagonal elements only,

1

2

@2Lh

@2<Fcalc
h

���� ����� @2Lh

@2=Fcalc
h

���� ����� �
Tiso�h�Taniso�h�Dfrag

h

Koverall

� �2

�33�

7. BUSTER±TNT refinement of a severely incomplete
structure: CD55

As an example of the use of BUSTER±TNT to re®ne and help

completion of severely incomplete structures, we will illustrate
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Table 1
Scaling parameters re®ned by ML in BUSTER.

Parameter type Symbol Parameters list

Overall scaling Pscal Koverall, Biso, �ij

Component scaling Pscal Kmiss, Bmiss, Ksolv, Bsolv

Component imperfection Pimpf B
impf
frag , K

impf
miss , B

impf
miss , B

impf
solv

Figure 2
Correlation coef®cients, CC(Fobs, Fcalc), between structure-factor ampli-
tudes at the end of BUSTER±TNT re®nements against the CD551234 data,
crystal form B, 25±2.8 AÊ data. Blue curves, re®nements of CD5534; dashed
line, without missing-structure model; full line, with missing-structure
model. Green curves, re®nements of CD55234; dashed line, without
missing-structure model; full line, with missing-structure model. Black
line, ®nal re®nement of the full model for CD551234.

7 Calls to the CCP4 program NCSMASK (Collaborative Computational
Project, Number 4, 1994) are used to perform any masking steps needed, while
any blurring steps are carried out within BUSTER

8 The dependence on the variance is not completely neglected, as an
entrainment factor is added to �@L=@Fcalc� �@Fcalc=@p�:



how the program was used to solve the crystal structure of

human CD55 starting from a 50% incomplete molecular-

replacement model.

CD55 is a four-domain 28 kDa human complement regu-

lator that accelerates the decay of the alternative and classical

pathway convertases, thus protecting self-cells from comple-

ment-mediated lysis. The crystal structure of a construct

consisting of domains 3 and 4 only (hereafter indicated as

CD5534) was solved ®rst (Williams et al., 2003). Subsequently,

crystals of CD55 domains 1±4 (hereafter CD551234) were

obtained; they belong to either of two crystal forms: A (2.3 AÊ

data; PDB code 1ojv) and B (2.8 AÊ data; PDB code 1ojw).

Both forms belong to space group P1, with two molecules in

the asymmetric unit and about 50% solvent content. For

details of data quality and processing, see Lukacik et al.

(2004).

7.1. Phasing of the CD551234 structure

The molecular-replacement program MOLREP (Vagin &

Teplyakov, 2000) was used to place two independent copies of

the crystallographic model for CD5534 (Williams et al., 2003).

This model for CD5534 was re®ned in BUSTER±TNT,

modelling the missing domains 1 and 2 with the homographic

exponential model described in x3.2.2.

After re®nement and model building on domains 3 and 4,

the BUSTER±TNT phases were used to locate heavy atoms in

a Pt derivative of crystal form A and an Au derivative of

crystal form B. SHARP (de La Fortelle & Bricogne, 1997)

heavy-atom re®nement and phasing of these Pt and Au models

in the two crystal forms separately did not lead to inter-

pretable maps (Lukacik et al., 2004).

An iterative phasing procedure was then followed, cycling

several times over the following three steps:

(i) phase combination of the BUSTER±TNT and SHARP

phases using SIGMAA (Read, 1986);

(ii) NCS and multicrystal averaging across the two crystal

forms performed with DMMULTI (Cowtan & Main, 1993);

(iii) model building in XTALVIEW (McRee, 1999) and new

BUSTER±TNT re®nement.

These steps were repeated until the full structure for domains

1±4 was built and re®ned in crystal form A; the full atomic

model for CD551234 built in crystal form A was then placed

and re®ned in crystal form B.

7.2. Analysis of the CD5534 and CD55234 BUSTER±TNT
refinements

In this section, we analyse BUSTER±TNT re®nements

against the CD551234 data. The re®nements were performed

with and without the missing-structure model at two different

stages of model building: the initial re®nements of domains 3

and 4 (50% incompleteness) and an intermediate stage where

domains 2±4 were built and re®ned but domain 1 was still

missing (25% incompleteness).

7.2.1. CD5534. The molecular-replacement solution for the

two copies of domains 3 and 4 was rigid-body re®ned and then

subjected to B-factor-only re®nement, followed by joint

positional and B-factor re®nement with tight NCS restraints in

both crystal form A and crystal form B. After rebuilding of the

model for domains 3 and 4, a ®nal round of tight NCS-

restrained re®nement gave the model for domains 3 and 4

discussed in this section.

At the beginning of each re®nement, the low-resolution

distribution for the missing domains 1 and 2 was computed as

a homographic exponential model (see x3.2.3) based on the

nominal solvent content of 50% and variance-®ltering of the

map obtained from the current phases. The bulk-solvent

model was based on the Babinet opposite of the mask around

domains 3 and 4 and was therefore overlapping with the

missing-structure low-resolution model. In a separate series of

re®nements, the same protocol was followed in the absence of

the missing-structure model, re®ning the model for domains 3

and 4 with the bulk-solvent model computed, as mentioned

above, by masking around domains 3 and 4.
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Table 2
CD5534 and CD55234 BUSTER±TNT overall scale factors.

The ratio to the overall scale factor of the re®nement for the full model is
reported in parentheses.

Re®nement Crystal form A Crystal form B

CD551234 1.137 (1.00) 1.43 (1.00)
CD5534, no missing structure 0.82 (0.72) 1.04 (0.73)
CD5534 1.24 (1.09) 1.08 (0.76)
CD55234, no missing structure 1.00 (0.88) 1.25 (0.87)
CD55234 1.07 (0.94) 1.25 (0.87)

Figure 3
Average phase error h�'i in resolution bins for re®nements of CD5534

and CD55234, crystal form B, 2.8 AÊ data. Blue curves, re®nements of
CD5534; dashed line, BUSTER±TNT without missing-structure model;
full line, BUSTER±TNT with missing-structure model; dotted line,
REFMAC5; dot-dashed line, CNS. Green curves, re®nements of CD55234;
dashed line, BUSTER±TNT without missing-structure model; full line,
BUSTER±TNT with missing-structure model; dotted line, REFMAC5;
dot-dashed line, CNS. Orange curve, after maximum-entropy calculation
at the end of the BUSTER±TNT CD55234 re®nement that used the
missing-structure model.



Table 2 reports the overall scale factors for the ®nal

re®nements of domains 3 and 4, in the presence and absence

of the missing-structure model, for both crystal forms of

CD551234. Modelling the missing structure clearly helps scaling

of the higher-resolution data set, while the improvement for

the 2.8 AÊ data in crystal form B is marginal.

However, for both crystal forms, signi®cant improvement in

the phases (and in the quality of the derived electron-density

and residual maps) is brought about by using the missing-

structure model. This improvement is illustrated in Fig. 3 by

the plot (for form B) of the average phase error,

h�'id� �fF1g; fF2g� �
hjF1F2�'1 ÿ '2�jid�
�hF2

1 F2
2 id� �1=2

: �34�

In Fig. 3 we also report the phase error for REFMAC5 and

CNS re®nements of the same CD5534 model in crystal form B;

they suffer from a larger phase error, which is expected given

the 50% incompleteness and the limited resolution.

7.2.2. CD55234. To the re®ned model for domains 3 and 4,

the model for domain 2 was added, taken from a different

crystal form (PDB code 1ojy), thus generating a 25% incom-

plete model for CD551234. Again, BUSTER±TNT re®nement

and rebuilding was carried out separately, with and without a

missing-structure model, and the phases and amplitude

correlation coef®cients were scored at the end. The distribu-

tion modelling the missing domain 1 of CD55 based on the

phases obtained from the partial atomic model for domains 2,

3 and 4 of CD55, is shown in Fig. 1. The effect of the modelling

of the missing structures is still visible in the phase error and

phased correlation coef®cients plots, whilst the ®t to the

amplitudes is essentially as good with or without the missing-

atoms model (see Fig. 2).

At this level of incompleteness (25%), the phases are good

enough to be subjected to a further step of ML phase

re®nement with maximum entropy constraints in BUSTER

(Bricogne et al., in preparation), to improve the density for the

missing domain 1. The resulting phase error is shown in Fig. 3.

This analysis con®rms earlier studies demonstrating that

BUSTER±TNT can be used successfully to bootstrap re®ne-

ment and completion from an initial incomplete molecular-

replacement solution. At 50% incompleteness, additional

phase information is required (in the form of NCS or multi-

crystal averaging or poor experimental phases) for structure

solution; at 25% incompleteness or lower, the re®nement will

lead to structure completion, provided the incomplete model

is accurate.

Examples of successful use of BUSTER±TNT to overcome

10±45% incompleteness and/or reduce phase bias in the

re®nement of macromolecular models can be found in the

literature (e.g. Dessen et al., 1999; Fischmann et al., 1999; Bard

et al., 2000; Koronakis et al., 2000; Somers et al., 2000; Ng et al.,

2000; von Delft et al., 2001; Han et al., 2001; Vicens & Westhof,

2002; Hanzal-Bayer et al., 2002; Benach et al., 2002; Sagermann

& Matthews, 2002; Madison et al., 2002; Svensson et al., 2003;

Retailleau et al., 2003; Izard et al., 2003).

8. Further developments

Further developments are under way to improve on a number

of limitations currently in the software. Among the main

improvements planned are

(i) a redesign of the error model, which at the moment

suffers from correlations between the bulk-solvent and partial

structure errors at low resolution, and suboptimal para-

meterization of the missing-structure error;

(ii) the use of homographic exponential modelling to

compute bulk-solvent envelopes from variance ®ltering of

electron-density maps, to improve the bulk-solvent correction

of severely incomplete structures;

(iv) inclusion of off-diagonal terms of the Hessian of the

stereochemistry restraints, which will speed up the power of

convergence by effectively allowing for joint movement of

atoms subjected to bond and angle restraints;

(v) re®nement against twinned data;

(vi) PDB deposition tools.

9. Conclusions

BUSTER±TNT offers the possibility of re®ning incomplete

macromolecular atomic models in the presence of a low-

resolution probability-based model for the missing structure.

The program combines the errors in the partial structure,

missing-atoms and bulk-solvent models to give a consistent

statistical probability distribution for the structure-factor

amplitude, which in turn is used to drive ML re®nement of the

model.

When the atomic model is very incomplete, modelling of the

missing structure and the consistency of the BUSTER statis-

tical model help structure building and completion because

(i) the accuracy of the overall scale factors is increased;

(ii) the bias affecting atomic model re®nement is reduced by

accounting for some of the scattering from the missing struc-

ture;

(iii) the addition of a spatial localization to the source of

incompleteness improves on traditional Luzzati and sigmaA-

based error models;

(iv) the program can perform selective density modi®cation

in the regions of unbuilt structure alone.

The program is available for download at http://

www.globalphasing.com/buster/.
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